NSF’s ChemMatCARS Team, April 2019

From left to right: Natalie Chen, SuYin Grass Wang, Wei Bu, Yu-Sheng Chen, Theodore Betley, Mati Meron, Jason Benedict, Matthew Tirrell, Mark Schlossman, Mrinal Bera, Ka Yee Lee, Binhua Lin

NSF's ChemMatCARS

Dedicated to static and dynamic condensed matter chemistry and materials science.

Liquid Surface/Interface X-ray Scattering

Used to investigate dynamical and structural properties of surfaces and interfaces in a variety of liquid and solid systems.

Advanced Crystallography

Uses a "rapid setup" crystallography facility that allows us to rapidly switch operation to the single-crystal instrument.

Recent Publications

NSF’s ChemMatCARS operates three experimental stations in the areas of advanced small-molecule crystallography, liquid surface and interface scattering, and small to wide-angle scattering at the Advanced Photon Source (APS), the premier undulator-based synchrotron source of high-brilliance high-energy x-rays in the U.S.A. The instrumentation at NSF’s ChemMatCARS provides information that addresses a broad range of issues in chemistry and materials research.

.


Latest News

NSF’s ChemMatCARS Receives $14 Million Grant from the National Science Foundation

Mark Schlossman of the Department of Physics at the University of Illinois at Chicago [https://schloss.people.uic.edu] and Matthew Tirrell, Ka Yee C. Lee, Yu-Sheng Chen, and Binhua Lin at University of Chicago received a five-year grant for $14.1 million to build a canted undulator beamline at Sector 15, APS, to develop new capabilities at NSF’s ChemMatCARS (click here for detailed story).

NSF’s ChemMatCARS Team, March 2019. Left to Right: Natalie Chen, SuYin Grass Wang, Wei Bu, Yu-Sheng Chen, Theodore Betley, Mati Meron, Jason Benedict, Matthew Tirrell, Mark Schlossman, Mrinal Bera, Ka Yee Lee, Binhua Lin

 

IME Researchers Receive $12 Million Grant for NSF’s ChemMatCARS from the National Science Foundation

Matthew Tirrell, dean of the Institute of Molecular Engineering at the University of Chicago, Mark Schlossman of the University of Illinois at Chicago, Ka Yee C. Lee of the University of Chicago, Theodore Betley of Harvard University, and Jason Benedict of the University at Buffalo, SUNY received a five-year grant for $12 million to operate and develop the National Science Foundation’s (NSF) ChemMatCARS (click here for detailed story).

NSF’s ChemMatCARS Team, May 2018. Front: Yu-Sheng Chen, Mark Schlossman, Binhua Lin, SuYin Grass Wang, Kimberly Simms, Ka Yee Lee. Back: Tieyan Chang, Mati Meron, Mrinal Bera, Jason Benedict, Wei Bu, Theodore Betley, Matthew Tirrell

.


Science Highlights

Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6

Abstract: An ordinary Hall effect in a conductor arises due to the Lorentz force acting on the charge carriers. In ferromagnets, an additional contribution to the Hall effect, the anomalous Hall effect (AHE), appears proportional to the magnetization. While the AHE is not seen in a collinear antiferromagnet, with zero net magnetization, recently it has been shown that an intrinsic AHE can be non-zero in non-collinear antiferromagnets as well as in topological materials hosting Weyl nodes near the Fermi energy. Here we report a large anomalous Hall effect with Hall conductivity of 27 Ω−1 cm−1 in a chiral-lattice antiferromagnet, CoNb3S6 consisting of a small intrinsic ferromagnetic component (≈0.0013 μB per Co) along c-axis. This small moment alone cannot explain the observed size of the AHE. We attribute the AHE to either formation of a complex magnetic texture or the combined effect of the small intrinsic moment on the electronic band structure.

Nirmal J. Ghimire, A.S. Botana, J.S. Jiang, Junjie Zhang, Y.-S. Chen, J.F. Mitchell, Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6.  Nat. Commun. 9, 3280-1-3280-6 (2018). doi: 10.1038/s41467-018-05756-7 (2018).

Topology-Guided Stepwise Insertion of Three Secondary Linkers in Zirconium Metal-Organic Frameworks

Abstract: We report a topology-guided, precise insertion of three distinct secondary linkers into a zirconium-based metal–organic framework, NPF-300. Constructed from a tetratopic linker L and Zr6 cluster, NPP-300 exhibits a unique scu topology and certain flexibility along the crystallographic a axis, and in conjunction with the conformation change of the primary ligand, is able to accommodate the stepwise insertion of three different secondary linkers along the a and c axes. Size-matching and mechanic strain of the resulting framework are two important factors that determine the chemical stability of the inserted linkers. Secondary linker insertion in NPF-300 significantly enables not only its porosity but also potentials to install up to three different functional groups for the construction of multivariate MOFs with homogeneity.

Xin Zhang, Brandon L. Frey, Yu-Sheng Chen, and Jian Zhang (2018) Topology-Guided Stepwise Insertion of Three Secondary Linkers in Zirconium Metal-Organic Frameworks.  J. Am. Chem. Soc., 140 (40), 7710-7715. doi: 10.1021/jacs.8b04277

See more science highlights

What’s New?

NSF’s ChemMatCARS is pleased to welcome new postdoc Pan Sun.  

On July 8, 2019, NSF’s beamline scientists Mati Meron and Wei Bu hosted a group of REU students from Ohio State, University of Chicago and University of IL Urbana-Champaign. 


On June 25-26, 2019, NSF’s  ChemMatCARS beamline scientist Wei Bu introduced the synchrotron facility at sector 15 to the students from the 2019 Neutron X-ray School.

NSF’s ChemMatCARS is pleased to welcome summer intern Abhishek Ravada from MaMaSELF Program, Université De Rennes 1, France. He will be working with Dr. Yu-Sheng Chen.  


On April 11, 2019, ANL hosted the annual Science Careers in Search of Women Conference (SCSW) and CARS was part of the tour. High-school girls from across the Chicago area came to explore careers in science, technology, engineering and math., Dr. Mrinal Bera of NSF’s ChemMatCARS introduced the synchrotron research at Sector 15.