Detector needs for synchrotron diffraction techniques

Antonino Miceli
APS Detectors Group
University of Chicago Consortium for Advanced Science and Engineering
amiceli@anl.gov
amiceli@uchicago.edu

12/14/2019
2019 Workshop on Advanced Crystallography
Area Detectors
Fundamentals - Counting versus Integrating

Analog Output
• Pulse Height ~ Energy

τ ~ 100 ns
Area Detectors

Fundamentals - Counting versus Integrating

Analog Output
- Pulse Height ~ Energy

? ~ 100 ns

Counting
“digital” (e.g., Pilatus)
Area Detectors
Fundamentals - Counting versus Integrating

Counting
“digital”
(e.g., Pilatus)

Integrating
“analog”
(e.g., CCDs)

Analog Output
- Pulse Height ~ Energy

\[\tau \sim 100 \text{ ns} \]

Digitizer
Dark Current

“digital”
“analog”
Area Detectors
From analog to digital

CCDs (integrating/analog, slow)
Area Detectors
From analog to digital

CCDs (integrating/analog, slow)

Counting pixel array detectors (counting/digital, fast, but…)
Pixel Detectors
Integrated Circuits (ASIC, ROIC)

Direct Detection of X-rays in solid state sensor
→ Point Spread Function: < 1 pixel

3.6 eV to create 1 eh-pair @12keV: 3300 eh-pairs
Pixel Detectors
CMOS Integrated Circuits (ASIC, ROIC)

ASIC = Application Specific Integrated Circuit
ROIC = Readout Integrated Circuit
Pixel Detectors
CMOS Integrated Circuits (ASIC, ROIC)

ASIC = Application Specific Integrated Circuit
ROIC = Readout Integrated Circuit
Pixel Detectors
CMOS Integrated Circuits (ASIC, ROIC)

ASIC = Application Specific Integrated Circuit
ROIC = Readout Integrated Circuit
Pixel Detectors

CMOS Integrated Circuits (ASIC, ROIC)

ASIC = Application Specific Integrated Circuit
ROIC = Readout Integrated Circuit
Area Detectors
Photon counting, speed and dynamic range

Pilatus specs
- 487 x 195 pixels (172 microns)
- Count Rate ~ 1 MHz/pixel
- 20-bit counter/pixel
- Frame Rate = 200 Hz
- Gateable & electronic shutter
- Lower Level Discriminator only

You do not have 20-bit dynamic range @ 200 Hz!!!

<table>
<thead>
<tr>
<th>Frame Rate (Hz)</th>
<th>Dynamic Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hz</td>
<td>10^6 (20-bits)</td>
</tr>
<tr>
<td>10 Hz</td>
<td>10^5</td>
</tr>
<tr>
<td>100 Hz</td>
<td>10^4</td>
</tr>
<tr>
<td>1 MHz</td>
<td>1</td>
</tr>
</tbody>
</table>

Dynamic range decreases with frame rate!
Area Detectors – analog is back!

Integrating detectors are needed for both high dynamic range & speed

- There are a number of R&D projects working on charge integrating detectors
 - Photon counting detector are much easier to realize.

- **Mixed-Mode PAD (Cornell/APS/Sydor)**
 - Remove discrete amounts of charge and count (Not for XFELs or serial crystallography)
 - Dynamic range ~ 10^8
 - ~ 1 kHz frame rate; 150 µm pixels
 - Silicon being commercialized via Sydor and CdTe version under development.

- **JUNGFRAU (PSI for SwissFEL/SLS)** (SLAC ePix10k is similar but 100 µm pixel)
 - Adaptive gain switch (XFEL or serial crystallography compatible)
 - Dynamic range ~ 10^4
 - ~ 1 kHz frame rate; 75 µm pixels
 - Only Silicon, right now.

- **AGIPD (EU-XFEL)**
 - 352 images at 4.5 MHz in burst mode
 - 200 µm pixels
 - 10^4 dynamic range per image
 - DESY/X-spectrum is willing to sell a Silicon version and working on a GaAs version for XFEL HiBEF.
 - Cornell also has similar development called Keck PAD (currently has SBIR funding), except 8 images only.
How do we move from kHz to MHz (continuous)?
Burst-mode MHz frame rate detectors exist

Keck, AGIPD, LPD, DSSC, UXI, FASPAX, etc

Keck PAD (CU) ~ 10 MHz, 12 images

AGIPD (EU-XFEL) ~ 5 MHz, 352 images

High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

Hugh T. Philipp,*,† Mark W. Tate,‡ Prafull Purohit,† Katherine S. Shanks,*,† Joel T. Weiss* and Sol M. Gruner†‡

*Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA, and †Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA. *Correspondence e-mail: htp@cornell.edu

A wide dynamic range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8-12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyindrical processes. The detector, along with modern storage ring sources which provide short (10-100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 x 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side battable modules are tiled in a 3 x 2 array with a full format of 256 x 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

200 µm

Analog Memory 352 cells

Analog front end

Analogue value capacitor

Memory cell switches

Gain bit capacitor

(b) Pixel layout.
Burst-mode MHz frame rate detectors exist
Analog front-ends are sufficiently fast!

AGIPD (EU-XFEL) ~ 5 MHz, 352 images

Figure 3. MPW prototypes and a fullscale ASIC.
How to move to CW MHz?

Move to a digital-dominated design with sub-100nm CMOS

AGIPD (130 nm CMOS)
Most of pixel is storage (burst)

Old approach: analog-dominated; design 1 pixel; step & repeat identical copies; custom made digital (if any at all)
How to move to CW MHz?
Move to a digital-dominated design with sub-100nm CMOS

New approach
- The big gain in sub-100nm CMOS is in the digital domain (clock speed and logic density).
- Going to smaller process nodes is the most effective path to high logic density.
 - CMOS feature size reduction results to first order in a quadratic increase with feature reduction factor.
- Transmission rates of digital data can be higher than analog data and use standardized interfaces.
- Digital signals are less prone to corruptions; error detection and correction algorithms can ensure data integrity.
- Digital data manipulation can be incorporated, such as on-chip compression schemes

Old approach: analog-dominated; design 1 pixel; step & repeat identical copies; custom made digital (if any at all)

AGIPD (130 nm CMOS)
Most of pixel is storage (burst)

(b) Pixel layout.
How to move to CW MHz?
In-pixel digitization, move data to edge & maximize off-chip bandwidth

AGIPD (130 nm CMOS)
Most of pixel is storage (burst)

New approach: Instead of using pixel area for storage, use it to transmit digital data to the edge (more room). Synthesized entire design with analog IP in a hierarchical way.

Digital-dominated design

In-pixel ADC and high-speed daisy-chained digital data path. Wide and fast data buses allow high-speed transfer of event data to chip edge for processing and transmission off chip.)
High-speed readout (off-chip)

Simple math

• \((256\times256\ \text{pixels}) \times (16\ \text{bits}) \times (200\ \text{kHz}) = 200\ \text{Gbps}\)
• \((256\times256\ \text{pixels}) \times (16\ \text{bits}) \times (1\ \text{MHz}) = 1\ \text{Tbps}\)

Three ways to get data off the chip as fast as possible
High-speed readout (off-chip)

Simple math

- \((256 \times 256\ \text{pixels}) \times (16\ \text{bits}) \times (200\ \text{kHz}) = 200\ \text{Gbps}\)
- \((256 \times 256\ \text{pixels}) \times (16\ \text{bits}) \times (1\ \text{MHz}) = 1\ \text{Tbps}\)

Three ways to get data off the chip as fast as possible

1. High-speed transceivers
 - In 65 nm, 10 Gbps is possible, but challenging
 - CERN’s lpGBT (Power ~ 0.5W!!)
High-speed readout (off-chip)

Simple math

• \((256 \times 256 \text{ pixels}) \times (16 \text{ bits}) \times (200 \text{ kHz}) = 200 \text{ Gbps}\)
• \((256 \times 256 \text{ pixels}) \times (16 \text{ bits}) \times (1 \text{ MHz}) = 1 \text{ Tbps}\)

Three ways to get data off the chip as fast as possible

1. **High-speed transceivers**
 • In 65 nm, 10 Gbps is possible, but challenging
 • CERN’s lqGBT (Power ~ 0.5W!!)

2. **Multiple high-speed transceivers**
 • In 65 nm, 10-20 10 Gbps might be possible one chip \(\rightarrow\) 100-200 Gbps
 • Timepix-4 is attempting 16 x 10 Gbps links
High-speed readout (off-chip)

Simple math

- \((256 \times 256 \ \text{pixels}) \times (16 \ \text{bits}) \times (200 \ \text{kHz}) = 200 \ \text{Gbps}\)
- \((256 \times 256 \ \text{pixels}) \times (16 \ \text{bits}) \times (1 \ \text{MHz}) = 1 \ \text{Tbps}\)

Three ways to get data off the chip as fast as possible

1. **High-speed transceivers**
 - In 65 nm, 10 Gbps is possible, but challenging
 - CERN’s lpgBT (Power ~ 0.5W!!)

2. **Multiple high-speed transceivers**
 - In 65 nm, 10-20 10 Gbps might be possible one chip \(\rightarrow\) 100-200 Gbps
 - Timepix-4 is attempting 16 x 10 Gbps links

3. **Compress data before you send off the chip**
 - “Bandwidth compression”
 - Compression exploits smoothness, autocorrelation and recurring patterns
How to move to CW MHz?

On-chip compression (i.e., “bandwidth compression”)

• Making the most efficient use of limited off-chip bandwidth will increase frame rates
• Digital-dominated designs make it straightforward to incorporate algorithms (once translated into RTL).
 • LZ4 lossless compressor block ~ 400k gates
 (doi:10.1587/elex.14.20170399, area ~ 0.3 mm x 1.7 mm in 65 nm)
• Lossless compression ratios
 • ~ 10 for macromolecular diffraction datasets (lz4-bs)
 • ~ 15 for ptychography datasets (Zstd) (Junjing Deng et al)
• “Scientific” lossy (SZ) compressor ratios (doi:10.1109/BigData.2018.8622520)
 • ~ 20 for a crystallography application (LCLS data)
 (doi:10.1177/1094342019853336)
• Can we live with some lossy compression? Reconstructions?
 • Compression more lossy where there less information?
On-chip compression (i.e., “bandwidth compression”)

First steps at Argonne

- Working in collaboration with ANL computing division (MCS) on ASIC compressor designs (Yoshii, Cappello, et al)
Strategies for on-chip data compression for charge integrating pixel detectors

Compression in the pixel

Digital lower threshold ("de-noiser") and conversion from ADUs to photons

Analog Front End

12-bit ADC

digital register

adder

12-bit divider

offset 3

divisor 3

gain

daisy chained data to following pixel columns

116\text{\mu m} \times 116\text{\mu m}

Digital Logic divider and de-noiser
35\text{\mu m} \times 100\text{\mu m}

ADC and Front End
65\text{\mu m} \times 90\text{\mu m}

Additional Logic

100\text{\mu m} \text{excluding power rings}

daisy chained signals between abutted pixel columns
Strategies for on-chip data compression for charge integrating pixel detectors

Compression at the detector ASIC periphery

A simple, lossless delta encoding scheme gives compression ratio of ~ 10 for Pilatus ff-HEDM dataset.
Beyond Silicon Sensors

> 20keV
Beyond Silicon Sensors

Beyond 20 keV…. CdTe, GaAs, Ge, etc?

![Graph showing X-ray absorption efficiency for Si, GaAs, CdTe, and Ge](Image)

Graph Details:
- **X-axis:** Photon energy / keV
- **Y-axis:** Fraction of absorbed intensity
- **Legend:**
 - 300 μm Si
 - 700 μm Si
 - 1 mm Si
 - 500 μm GaAs
 - 1 mm CdTe
 - 2 mm CdTe
 - 3000 microns Ge
Beyond Silicon Sensors
Beyond 20 keV.... CdTe, GaAs, Ge, etc?

CdTe gain variations after *moderate* dose for the MM-PAD detector at 0 C.

(a) Before dosing. (b) After exposure to 3×10^{11} photons/mm2.

Compound semiconductors are unlikely to be perform well under high dose conditions (e.g., XFELs or high-flux synchrotrons experiments) due to high crystal defects.

https://arxiv.org/abs/1609.03513
Summary

- Photon counting detectors (like the Pilatus) do not scale beyond kHz frame rates
Summary

- Photon counting detectors (like the Pilatus) do not scale beyond kHz frame rates.
- Integrating detectors will be needed to maintain dynamic range at faster rates.
 - Calibration will be more complicated compared to the “noiseless” Pilatus.
Summary

- Photon counting detectors (like the Pilatus) do not scale beyond kHz frame rates
- Integrating detectors will be needed to maintain dynamic range at faster rates
 - Calibration will be more complicated compared to the “noiseless” Pilatus
- CW MHz frame rates are within reach with modern sub-100nm CMOS integrated circuit technology
 - Will allow for more digital logic in the detector chip such as compression, auto-calibration
Summary

- Photon counting detectors (like the Pilatus) do not scale beyond kHz frame rates

- Integrating detectors will be needed to maintain dynamic range at faster rates
 - Calibration will be more complicated compared to the “noiseless” Pilatus

- CW MHz frame rates are within reach with modern sub-100nm CMOS integrated circuit technology
 - Will allow for more digital logic in the detector chip such as compression, auto-calibration

- Sensors beyond silicon are a big material science problem!
 - Integrating detectors will not “hide” the problem like the Pilatus CdTe!
Extra slides
Custom ptychographic processing units?
Near-detector, real-time AI computing for high-throughput lensless imaging

- Various forms of X-ray lenless image reconstruction through backpropagation have been implemented in Tensorflow (Youssef S.G.Nashed et al).
- One can imagine some sort of TPU-like architecture with additional FFT-specific capabilities would be very useful for those algorithms.