Thursday and Friday, April 23 and 24, 2020

NSF’s ChemMatCARS, Sector 15, Advanced Photon Source, Argonne National Laboratory

About the Workshop

In conjuction with the 2020 APS Users Meeting, NSF’s ChemMatCARS is offering a two-day satellite workshop on data analysis for X-ray studies of liquid interfaces. The workshop is designed primarily for graduate students, postdoctoral researchers and young scientists with some expertise in liquid interface science.

Synchrotron X-ray scattering is the most powerful probe of near-atomic-level structure at liquid-vapor and liquid-liquid interfaces. Over the past 20 years, X-ray scattering from liquid interfaces has led to many key discoveries in physical, chemical, biological, and technological systems. However, the complex data analysis combined with the lack of a standard software package has prevented this technique from being adopted more widely across scientific communities. To address this barrier, we are presenting an in-depth workshop on analyzing synchrotron X-ray scattering data from liquid surfaces and interfaces.

The course will focus on using the NSF’s ChemMatCARS data analysis package. We will provide a combination of interactive lectures, student activities, and beamline/instrument tours. The course content includes discussion of the theory underlying the data analysis and demonstrations of experimental methodology.

Participants are required to bring their own laptops and to install and use the data analysis software developed by NSF’s ChemMatCARS. Class limited to 25-30 participants.

Liquid Interface Instruments

The Liquid Surface X-ray Scattering Program at NSF’s ChemMatCARS operates a full suite of X-ray surface scattering techniques. Capabilities permit measurement of atomic, molecular, and mesoscopic ordering at liquid interfaces. Techniques offered include

  • Resonant and non-resonant reflectivity
  • Grazing-incidence diffraction and small angle scattering
  • Surface fluorescence
  • Surface diffuse scattering
  • Fast techniques, such as grazing incidence diffraction in the 1D pinhole geometry.

For me the most beneficial part was learning the theory behind the X-ray experiments, getting an intuition for what the data means and how to interpret it, and learning about how they’re applied to various systems/applications. I also learned about the kind of research that other users are doing.

Organizers

Wei Bu
Beamline Scientist — Liquid Surface/Interface Scattering
(630) 252-0470
bu@cars.uchicago.edu

Natalie Chen
Sector User Coordinator, NSF’s ChemMatCARS
(630) 252-0476
nchen@cars.uchicago.edu

The workshop is supported by NSF grant #1834750, “NSF’s ChemMatCARS: A synchrotron X-ray national facility for chemistry and materials research at the Advanced Photon Source,” Matthew Tirrell (Principal Investigator), Mark Schlossman, Ka Yee Lee, Theodore Betley, and Jason Benedict (Co-Principal Investigators).

National Science Foundation logo